首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10621篇
  免费   1347篇
  国内免费   399篇
电工技术   239篇
综合类   758篇
化学工业   1966篇
金属工艺   1048篇
机械仪表   580篇
建筑科学   225篇
矿业工程   362篇
能源动力   708篇
轻工业   2363篇
水利工程   29篇
石油天然气   106篇
武器工业   104篇
无线电   837篇
一般工业技术   1045篇
冶金工业   268篇
原子能技术   24篇
自动化技术   1705篇
  2024年   41篇
  2023年   637篇
  2022年   557篇
  2021年   619篇
  2020年   815篇
  2019年   586篇
  2018年   412篇
  2017年   507篇
  2016年   621篇
  2015年   591篇
  2014年   775篇
  2013年   790篇
  2012年   1098篇
  2011年   988篇
  2010年   537篇
  2009年   669篇
  2008年   266篇
  2007年   685篇
  2006年   513篇
  2005年   178篇
  2004年   83篇
  2003年   80篇
  2002年   79篇
  2001年   76篇
  2000年   45篇
  1999年   78篇
  1998年   26篇
  1997年   5篇
  1996年   1篇
  1994年   2篇
  1991年   1篇
  1976年   2篇
  1959年   1篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
To elucidate the crystal growth process of hematite in high-temperature lead-free multicomponent alkali borosilicate glass, which is essentially important to control the color of red overglaze enamels, frit and hematite mixture is heat-treated and subjected to microscopic observations. Hematite particles slightly grew due to sintering at low temperature. Once the glass matrix formed near the softening point of frit, hematite dissolved into glass fluid. Hematite crystal growth concomitantly ensued with decrease in the number of hematite particles via Ostwald ripening as the temperature increased. The grown particles exhibited an anisotropic morphology with straight outlines reflecting crystal planes, the morphology of which is completely different from those grown by sintering and particles prior to heating. These results suggest that comprehensive understanding of frit and hematite from the perspectives of glass science and chemistry as well as powder technology are important to truly control the color of red overglaze enamels.  相似文献   
2.
Nowadays, oil pollution has become more serious, which causes great threats both to the ecological environment and human life. In this study, a novel type of multifunctional deacetylated cellulose acetate/polyurethane (d-MCA:MTPU) composite nanofiber membranes for oil/water separation are successfully fabricated by electrospinning, which show super-amphiphilicity in air, super-hydrophilicity in oil, and oleophobicity in water. All the d-MCA:MTPU composite nanofiber membranes with different mass ratios can be used as water-removing, oil-removing, and emulsion separation substance only by gravity driving force. The highest separation flux for water and oil reaches up to 37 000 and 74 000 L m−2 h−1, respectively, and all the separation efficiencies are more than 99%. They have outstanding comprehensive mechanics performance, which can be controlled by simply adjusting the mass ratios. They show excellent antifouling and self-cleaning ability, endowing powerful cyclic stability and reusability. Those results show that d-MCA:MTPU composite nanofiber membranes have great application prospects in oil/water separation.  相似文献   
3.
4.
In nature, the feathers of the goose Anser cygnoides domesticus stay superhydrophobic over a long term, thought as the main reason for keeping the surface clean. However, contaminants, especially those that are oleophilic or trapped within textures, cannot be removed off the superhydrophobic feathers spontaneously. Here, a different self-cleaning strategy based on superhydrophilic feathers is revealed that is imparted by self-coating of the amphiphilic saliva, which enables removing away low-surface-tension and/or small-size contaminants by forming directional water sheeting depending on their unique anisotropic microstructures. Particularly, the surface superhydrophilicity is switchable to superhydrophobicity upon exposure to air for maintaining a clean surface for a long time, which is further enhanced by coating with self-secreted preening oil. By alternate switching between a transient superhydrophilicity and a long-term stable superhydrophobicity, the goose feathers exhibit an integrated smart self-cleaning strategy, which is also shared by other aquatic birds. An attractive point is the re-entrant structure of the feathers, which facilitates not only liquid spreading on superhydrophilic feathers, but also long-term stability of the cleaned surface by shedding water droplets off the superhydrophobicity feathers. Thus, artificial self-cleaning microtextures are developed. The result renews the common knowledge on the self-cleaning of aquatic bird feathers, offering inspiration for developing bioinspired self-cleaning microtextures and coatings.  相似文献   
5.
Zhang  Qi  Wang  Yujing  Zhang  Xueling  Song  Jun  Li  Yinlei  Wu  Xuehong  Yuan  Kunjie 《Journal of Materials Science》2022,57(14):7208-7224
Journal of Materials Science - Form-stable composite phase change materials (C-PCMs) prepared by microencapsulation method and porous matrix adsorption method need for compression molding after...  相似文献   
6.
Higher alcohols synthesis (HAS) from syngas (CO/H2) has attracted widespread attention, while the low selectivity and poor stability of the catalysts mainly stumbled its industrial application. In the work, Ni–Co alloy nanoparticles (NPs) derived from Co1-xNixAl2O4 loaded on the SiO2 with large specific surface area were prepared; and during reaction, the highly dispersed Ni–Co alloys were self-optimized to Ni–Co alloy@Co–Co2C. Importantly, Ni–Co alloy@Co–Co2C can be regenerated through oxidation - reduction - self-optimization process. Characteristic results indicated that the structural liberalization during the reaction process inhibited the loss of Ni, regulated and balanced the dual active sites of the catalyst and the Ni–Co alloys were regenerated after the re-oxidation and re-reduction process. The optimized catalyst exhibited excellent catalytic performance, including a high total selectivity to alcohols of 39.3% and an excellent catalytic stability at 250 °C, 3.5 MPa (H2/CO = 2) and a space velocity of 6000 mL (gcat h)?1. In addition, the Ni–Co alloy@Co–Co2C catalyst after stability test could recover its original catalytic performance after re-oxidation and re-reduction. The renewable characteristics and superior catalytic performance of Ni–Co alloy@Co–Co2C made the catalyst to be one of the potential industrial catalysts for HAS.  相似文献   
7.
The gel-forming ability of myofibrillar protein (MP) is highly correlated with the characteristics of emulsified meat products. Incorporation of Agaricus bisporus (Ab) powder into MP gels may enhance its gel properties to facilitate the development of a novel and safe meat product. Therefore, this study investigated the effects of Ab powder on gel strength, water holding capacity (WHC), texture, rheological behaviour, LF-NMR spin–spin relaxation (T2), microstructure and protein secondary structure of the MP gel system. The results indicated that the gel strength, WHC, G' value and G" value were significantly improved when the addition of Ab powder increased from 0% to 6% (P < 0.05). Meanwhile, the T2 relaxation time was shortened, and free water was transformed into immobilised water. The texture of the gel was improved when 1%–4% Ab powder was added compared to the control. Furthermore, Ab filled in the gel network and promoted the unfolding of MP α-helix and the formation of MP β-sheet during the thermal denaturation of MP, leading to a dense aggregated network structure. The study suggested that Ab could be a promising ingredient in improving chicken MP's gel properties and developing fat-reduced meat products.  相似文献   
8.
《Ceramics International》2022,48(7):9413-9425
Artificial bone fillers are essentially required for repairing bone defects, and developing the fillers with synergistic biocompatibility and anti-bacterial activity persists as one of the critical challenges. In this work, a new agarose/gadolinium-doped hydroxyapatite filler with three-dimensional porous structures was fabricated. For the composite filler, agarose provides three-dimensional skeleton and endows porosity, workability, and high specific surface area, hydroxyapatite (HA) offers the biocompatibility, and the rare earth element gadolinium (Gd) acts as the antibacterial agent. X-ray photoelectron spectroscopy detection showed the doping of Gd in HA lattice with the formation of Gd-HA interstitial solid solution. Attenuated total reflection Fourier transform infrared spectroscopy imaging suggested chemical interactions between agarose and Gd-HA, and the physical structure of agarose was tuned by the Gd-doped HA. Cytotoxicity testing and alizarin red staining experiments using mouse pro-osteoblasts (MC3T3-E1) revealed remarkable bioactivity and osteogenic properties of the composite fillers, and proliferation and growth rates of the cells increased in proportion to Gd content in the composites. Antibacterial testing using the gram-positive bacteria S. aureus and the gram-negative bacteria E. coli indicated promising antibacterial properties of the fillers. Meanwhile, the antibacterial properties of composite filles were enhanced with the increase of Gd content. The antibacterial fillers with porous structure and excellent physicomechanical properties show inspiring potential for bone defect repair.  相似文献   
9.
Conjugated polymers have emerged as a promising class of organic photocatalysts for photocatalytic hydrogen evolution from water splitting due to their adjustable chemical structures and electronic properties. However, developing highly efficient organic polymer photocatalysts with high photocatalytic activity for hydrogen evolution remains a significant challenge. Herein, we present an efficient approach to enhance the photocatalytic performance of linear conjugated polymers by modifying the surface chemistry via introducing a hydrophilic adenine group into the side chain. The adenine unit with five nitrogen atoms could enhance the interaction between the surface of polymer photocatalyst and water molecules through the formation of hydrogen bonding, which improves the hydrophilicity and dispersity of the resulting polymer photocatalyst in the photocatalytic reaction solution. In addition, the strong electron-donating ability of adenine group with plentiful nitrogen atoms could promote the separation of light-induced electrons and holes. As a result, the adenine-functionalized conjugated polymer PF6A-DBTO2 shows a high photocatalytic activity with a hydrogen evolution rate (HER) of 25.21 mmol g?1 h?1 under UV-Vis light irradiation, which is much higher than that of its counterpart polymer PF6-DBTO2 without the adenine group (6.53 mmol g?1 h?1). More importantly, PF6A-DBTO2 without addition of a Pt co-catalyst also exhibits an impressive HER of 21.93 mmol g?1 h?1 under visible light (λ > 420 nm). This work highlights that it is an efficient strategy to improve the photocatalytic activity of conjugated polymer photocatalysts by the modification of surface chemistry.  相似文献   
10.
As proton-exchange membrane fuel cell technology has grown and developed, there has been increasing demand for the design of novel catalyst architectures to achieve high power density and realize wide commercialization. Herein, based on the two-dimensional biphenylene, we compare the oxygen reduction reaction (ORR) activity on the active sites with different biaxial lattice strains using first-principles calculations. The ORR free energy diagrams of biphenylene monolayers with varying lattice strains suggest that the biaxial tensile strains are unfavorable for catalytic activity. In contrast, the biaxial compressive strains could improve the catalytic performance. The biphenylene systems with the strain of ?2% ~ ?6% (S-0.02~-0.06) display overpotentials of 0.37–0.49 V. This performance is comparable to or better than the Pt (111) surface. The Bader charge transfer of adsorbed O species on various biaxial strain biphenylene catalysts could be a describer to examine the catalytic activity. The catalysts possessed the moderate transferred charge of O adsorbed species often promotes catalytic process and give the high catalysis efficiency. Overall, this work suggests that the lattice strain strategy can significantly enhance the catalytic activity of biphenylene materials and further provide guidance to design biphenylene-based catalysts in various chemical reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号